Some Modifications of Mps Method for Incompressible Free Surface Flow
نویسندگان
چکیده
As a Lagrangian mesh-free method, the Moving Particle Semi-implicit (MPS)[1] method is very suitable for simulating violent flows, such as breaking waves on free surface. However, despite its wide range of applicability, the original MPS algorithm suffers from some inherent difficulties in obtaining an accurate fluid pressure in both spatial and time domain. Different modifications to improve the method have been proposed [2-5] in the literature. In this paper, the authors developed a particle position shifting and collision handling technique which could effectively suppress the pressure fluctuation. In addition, a new version of “cell-link” neighbour particle searching strategy, which reduces about 7/9 (~78%) of the searching area compared with traditional “cell-link” algorithm, is proposed. The developed MPS method with the proposed modifications has been tested on two free surface flow problems: 2D dam break and liquid sloshing. The numerical results obtained are found to be in good agreement with the available numerical and experimental results. With the proposed modifications, the stability and accuracy of the pressure field are improved in spatial and time domains.
منابع مشابه
Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملNumerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملInvestigation of Keel Curvature Effect on the Hydrodynamic Characteristics of a V-Shaped Planing Surface
In this paper, three-dimensional two phase turbulent free surface flow is solved by an in-house code. The incompressible Reynolds average Navier-Stocks equations (RANS) with k-ε turbulence model are solved by the finite volume method in the non-orthogonal curvilinear coordinates. For the modeling of the free surface effect, Lagrangian propagation volume tracking method (VOF-PLIC) is used. The c...
متن کاملSimulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm
This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...
متن کاملIncompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014